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Hyperbolic Conservation Laws - Introduction

• Hyperbolic Conservation Laws can be written in the form:

∂U

∂t
+ ∇· ~F (U) = S

• More explicit form:

∂U

∂t
+

D−1∑
d=0

∂F d(U)

∂xd
= S

• Changing to primitive variables, W = W (U):

∂W

∂t
+

D−1∑
d=0

Ad(W )
∂W d

∂xd
= S′

Ad = ∇UW · ∇UF d · ∇W U

S′ = ∇UW · S



Hyperbolic Conservation Laws - Examples

• 2D Gas Dynamics (Compressible Euler Equations):

U = (ρ, ρu1, ρu2, ρE)

F 1 = (ρu1, ρu2
1 + p, ρu1u2, ρu1E + u1p)

F 2 = (ρu2, ρu1u2, ρu2
2 + p, ρu2E + u2p)

S = 0

W = (ρ, u1, u2, E)

p = (γ − 1)ρe

e = (E −
1

2
(u2

1 + u2
2))



Hyperbolic Conservation Laws - Examples
• Ideal MHD:

U = (ρ, ρ~u, ~B, ρE)

F = (ρ~u,

ρ~u~u + (P + 1
8π

| ~B|2)I − 1
4π

~B ~B,

~u ~B − ~B~u,

(ρE + P + 1
8π

| ~B|2)~u − 1
4π

(~u· ~B) ~B)

S = 0

W = (ρ, ~u, ~B, E)

ρE = (
1

2
ρ|~u|2 + 1

8π
| ~B|2 + 1

γ−1
P )

∇· ~B = 0



Hyperbolic Conservation Laws - Discretization

• Notation and indexing: i is a spatial index and n is a time
index:

i + e1

i + 1
2
e1

i − e0 i i + e0

h

i − 1
2
e1

i − e1

• The spatial index and the time index are related to physical
coordinates via h and ∆t, respectively



• Cells are grouped into boxes:

• Boxes are grouped into levels:



Hyperbolic Conservation Laws - Discretization
• Levels at different resolutions are nested:

• This nesting allows the coarser level to define the boundary
conditions for the finer level:
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Hyperbolic Conservation Laws - Discretization
• Consider a single level (collection of boxes) at a fixed resolution

• Approximate the divergence of the flux in each cell of each box:

∇· ~F ≈ D ~F ≡
1

h

D−1∑
d=0

(F d
i+1

2
ed − F d

i−1
2

ed)

F 1
i+1

2
e1

D ~F
F 0

i−1
2

e0 F 0
i+1

2
e0

F 1
i−1

2
e1

• This is exact if ∇· ~F was a cell average and the F d
i±1

2
ed were

face averages (divergence theorem)



• Second-order accurate in space if fluxes are second-order
accurate

• Update the solution:

Un+1 = Un − ∆t(D ~F ) , ~F = ~F (Un)

• The critical element is the accurate computation of F d in space
and time

• Second-order accuracy in time is achieved by using a
predictor-corrector method



Hyperbolic Conservation Laws - Algorithm

Given Un
i and Sn

i , we want to compute a second-order accurate
estimate of the fluxes:

F
n+1

2

i+1
2

ed ≈ F d(x0 + (i +
1

2
ed)h, tn +

1

2
∆t)

1. Compute the effect of the normal derivative terms and the
source term on the extrapolation in space and time from cell
centers to faces. For 0 ≤ d < D:

Wi,±,d = W n
i +

1

2
(±I −

∆t

h
Ad

i )P±(∆dWi)

Ad
i = Ad(Wi)

P±(W ) =
∑

±λk>0

(lk · W )rk

Wi,±,d = Wi,±,d +
∆t

2
∇UW · Sn

i



where λk are eigenvalues of Ad
i , and lk and rk are the

corresponding left and right eigenvectors.

2. Compute estimates of F d suitable for computing 1D flux
derivatives ∂F d

∂xd using a Riemann solver for the interior, R, and
for the boundary, RB. Here, and in what follows, ∇UW need
only be first-order accurate, e.g., differ from the value at Un

i by
O(h):

F 1D
i+1

2
ed = R(Wi,+,d, Wi+ed,−,d, d)

| RB(Wi,+,d, (i +
1

2
ed)h, d)

| RB(Wi+ed,−,d, (i +
1

2
ed)h, d)

3. In 3D compute corrections to Wi,±,d corresponding to one set
of transverse derivatives appropriate to obtain (1, 1, 1)



diagonal coupling. In 2D skip this step:

Wi,±,d1,d2 = Wi,±,d1 −
∆t

3h
∇UW · (F 1D

i+1
2

ed2
− F 1D

i−1
2

ed2
)

4. In 3D compute fluxes corresponding to corrections made in the
previous step. In 2D skip this step:

Fi+1
2

ed1 ,d2
= R(Wi,+,d1,d2, Wi+ed1 ,−,d1,d2

, d1)

| RB(Wi,+,d1,d2, (i +
1

2
ed1)h, d1)

| RB(Wi+ed1 ,−,d1,d2
, (i +

1

2
ed1)h, d1)

5. Compute final corrections to Wi,±,d due to the final transverse



derivatives:

2D: W
n+1

2
i,±,d = Wi,±,d −

∆t

2h
∇UW · (F 1D

i+1
2

ed1
− F 1D

i−1
2

ed1
)

3D: W
n+1

2
i,±,d = Wi,±,d −

∆t

2h
∇UW · (Fi+1

2
ed1 ,d2

− Fi−1
2

ed1 ,d2
)

−
∆t

2h
∇UW · (Fi+1

2
ed2 ,d1

− Fi−1
2

ed2 ,d1
)

6. Compute final estimate of fluxes:

F
n+1

2

i+1
2

ed = R(W
n+1

2
i,+,d, W

n+1
2

i+ed,−,d
, d)

| RB(W
n+1

2
i,+,d, (i +

1

2
ed)h, d)

| RB(W
n+1

2

i+ed,−,d
, (i +

1

2
ed)h, d)



7. Update the solution using the divergence of the fluxes:

Un+1
i = Un

i −
∆t

h

D−1∑
d=0

(F
n+1

2

i+1
2

ed − F
n+1

2

i−1
2

ed)

• Fourth order slope calculations with limiting and flattening

• Extensions to piecewise parabolic methods (PPM)

• Second-order accurate in space and time

• “Accurate” shock capture - robust and stable

• This is an “unsplit” algorithm for the updating of the
conservative quantities, U

• Everything has been reduced to computations that can be
computed box by box (if ghost cells are used) and all reduced to
1D



Hyperbolic Conservation Laws - Implementation

• All physics independent code has been implemented and
requires no modification by the user:

– The framework for time dependent, adaptive mesh
refinement (AMR) computations, including: AMR mesh
generation, time step control, interaction between levels

– All the computations for hyperbolic conservation laws with
the exception of a handful of physics dependent routines

– Parallel computation without modifications to code - only
recompilation



Hyperbolic Conservation Laws - Implementation
• Recall Step 1 of the algorithm:

Wi,±,d = W n
i +

1

2
(±I −

∆t

h
Ad

i )P±(∆dWi)

Ad
i = (∇UW )i · ∇UF d

i · (∇W U)i

• The following physics dependent routines must be provided by
the user:

– Eigen-analysis of the linearization of Ad(W ):
transformations between characteristic variables
(eigenvectors) and primitive variables, computation of
eigenvalues

– The solution to 1D Riemann problems given the primitive
variable values on each side of a face

– Quasilinear update - computation of: Ad(W )P±(∆dW )/h

– Maximum wave speed (in a box) given the conserved



variable values (in the box)

– The transformation of conserved variables to primitive
variables

– The computation of fluxes on a face given the value of the
primitive variables on the face

– Physical boundary conditions - if the boundaries of the
domain are periodic then this is trivial to provide

– Various bookkeeping functions - number of conserved
variables, number of primitive variables, etc.



Hyperbolic Conservation Laws - Additional Notes

• Some current work using Chombo’s framework:

– Gas Dynamics - Current example in Chombo library (PLM
and PPM)

– Ideal MHD - Ravi Samtaney (PPPL/ANAG), Rob Crockett
(UCB Physics)

– Self Gravitating Gas Dynamics with MHD and coupling to
collisionless particles - Francesco Miniati (ETH)

• Current development:

– Particle computations

– Multifluid computations



Visualization and Data Analysis - Introduction

• ChomboVis - visualization and data analysis tool for AMR data

• Some capabilities:

– Grid display

– Data slices

– Contours / Isosurfaces

– Streamlines

– Clipping

– Data selection and spreadsheets

– State saving and restoring

– Creation of derived quantities

• Driven by user’s needs and funding

• One fulltime developer



Visualization and Data Analysis -
Design/Architecture

• Built modularly using existing software packages: Python,
VTK, Tk, HDF5

• Scripting language with all functionality available

• Data viewing and analysis a core requirement

• Use of OpenGL graphics acceleration including advanced
graphics capabilities (e.g., texture mapping)

• Reads and writes data using HDF5 which is machine
independent/portable

• Customization via startup file using scripting language

• Data read and stored only on demand

• Non-graphical versions of ChomboVis provided

• Core visualization and data analysis tool of developers



Visualization and Data Analysis - Capabilities

Demonstration and Movies



Visualization and Data Analysis - Features
• Different data centerings

• Multiple tools synchronized (master/slave)

• Offscreen rendering

• Rendering directly to encapsulated PostScript (vector output)

• Particles

• Embedded Boundaries

• Multifluids



Remarks - Software Availability

• Software and documentation is available locally on
“joshuatree” under “/usr/local/chombo”

• Also available on the ANAG WWW site:
http://seesar.lbl.gov/anag under “Software”

• E-mail to the developers:

– chombo@hpcrd.lbl.gov (Chombo)

– chombovis@hpcrd.lbl.gov (ChomboVis)

• This talk is available at:

– “joshuatree” under “/usr/local/chombo” as
“talk-March28.pdf”

– http://seesar.lbl.gov/anag/staff/ligocki/index.html under
the IPAM link
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